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Abstract-To the best of the knowledge of the authors, there are no exact solutions available for
the bending of beams with spatially stochastic stiffness. Investigators are therefore utilizing various
approximate techniques. In the present study, a new method is developed to obtain exact solutions
for first and second moments of displacements for statically determinate beams that have spatially
random stiffness. The method is based on the full probabilistic characterization of the random
stiffness so that the solutions are valid for any value of the coefficient of variation of the stiffness.
The deterministic governing equations and boundary conditions derived for both first and second
moments allow, apparently for the first time in the literature, the exact solutions for the mean and
covariance functions of the displacements to be determined. Two governing equations are uncoupled
from each other and can be solved separately. Several exact solutions for the mean and covariance
functions are obtained to illustrate the application of the method. It is hoped that the exact solutions
determined will serve as benchmark solutions to enable the researchers to check the accuracy of
various approximate analytical and numerical techniques on the test solutions presented in this
study.

INTRODUCTION

Structures involving spatially random material and/or geometrical parameters are referred
to as stochastic structures. The analysis of stochastic structures has attracted the significant
interest ofmany researchers in recent decades. However, difficulties arise in obtaining exact
solutions of stochastic structures since the appropriate governing equations constitute
random differential equations with random coefficient functions, and possibly with random
boundary conditions. Several approximate methods (both analytical and numerical) have
therefore been developed to address the problem. Most of these methods are based on a
perturbation technique or a series expansion method and are applicable only to small
coefficients of variation of the random parameters. Analytical perturbation methods include
those of Molyneux and Beran (1965) and Lomakin (1970), whereas perturbation-based
numerical methods are represented by the stochastic finite element methods developed by
Nakagiri and Hisada (1981, 1985), Yamazaki, Shinozuka, and Dasgupta (1988), and others.

For beam-bending problems, both a spatially random material parameter (Young's
modulus) and geometrical parameters (dimensions of the cross-section) can be combined
into one parameter (the bending stiffness). The governing equation of the beam bending is
a differential equation with spatially varying random coefficient, along with random boun­
dary conditions. In this paper, we derive exact expressions for the first and second moments
of the displacement. The solutions for the mean and covariance function of the beam
displacement with spatially random stiffness are precisely obtained if the inner forces are
statically determinate. The deterministic governing equations and boundary conditions for
the first and second moments (mean and covariance function) of displacements are shown
to be uncoupled from each other, on the basis of full probabilistic knowledge of the random
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stiffness. Two deterministic governing equations can be solved separately by means of
deterministic methods. analytically or numerically.

It must be stressed that the search for closed-form solutions is desirable, since, by this
means. the influence of various parameters would be directly "visible" without the para­
metric analysis necessary in numerical solutions. Moreover, a closed-form solution serves
as a benchmark solution for comparison purposes, namely, in the cases where the exact
solution is unavailable and numerical methods (for example, the method of stochastic finite
elements) should be resorted to. The computer program developed can be checked for the
special cases in which a closed-form solution is present, and the latter will serve as a test
problem. The solutions derived in this paper are applicable to any value of the coefficient
of variation of the random stiffness. The proposed solutions can therefore be utilized to
verify the accuracy of existing perturbation solutions,

Three beam problems with spatially random stiffness are examplified to show the
application of the present method. They are: (i) a cantilever beam under an end moment,
with the spatially random stiffness possessing a uniform distribution and a second-order
auto-regressive correlation; (ii) a cantilever beam under a linearly distributed force, with
uniformly distributed random stiffness possessing triangular correlation; and (iii) a simply
supported beam under uniform force, with the random stiffness of the beam having tri­
angular distribution with exponential correlation. Exact solutions for the mean and covari­
ance functions of displacements for these problems are obtained. It is worthy of note that
the displacement function is no longer a homogeneous random field even if the random
stiffness is homogeneous. owing to the existence of boundaries.

BASIC EQCAnONS

The beam-bending problem with spatially stochastic stiffness is governed by the fol­
lowing equation:

d 2l d 21t']-, E/(x) ---:; = q (x)
dr dr

(1)

where \t'(x) = the displacement, q(x) = the transverse distributed force, and E/(x) = the
bending stiffness. which is assumed to be a spatially random field, Equation (1) can be
rewritten as

where

d 2 \t' m(x)

dx 2 E/(x)

m(x) = - CI' q(u) dudc+Qox+Mo
&J 0 ILl (I

(2)

(3)

is the bending moment in the cross-section of the beam, and M o and Qo are constants of
integration representing the bending moment and shear force at the end x = 0, respectively.
Assume that moments and shear forces in the beam are statically determinate, namely, that
M 0 and Qo are independent of the stochastic stiffness but dependent upon the loading and
boundary conditions. By taking expectation from eqn (2), we obtain

d 2)\' m(x)

dx 2 DoCY)

where IT'(.Y) = E[\t,(x)] is the mean of the displacement \V(x), and Do(x) is defined by

(4)
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(5)

where EO signifies mathematical expectation. Pre-multipying eqn (4) by Do(x) and differ­
entiating the result twice, we obtain the governing equation for the mean value of dis­
placement response \v(x) :

(6)

Equation (6) is the governing equation for the mean of displacement. In form, eqn (6)
is identical to the equation of the beam with deterministic stiffness Do(x). Subtracting eqn
(4) from eqn (2) and multiplying the resulting equation by itself but evaluated at the cross­
section y, we obtain

d2[w(x)-~j>(x)] d2[w(y)-~j:'(y)] . [I I J[ I 1 J
---------- = m(x)m(y) -- - -- -- - --. (7)

dx 2 dy 2 El(x) Do (x) E/(y) Do (y)

Taking expectation of eqn (7) and then partially differentiating the result twice with respect
to x and twice with respect to y, we arrive at the governing equation for the covariance
function of displacement:

(8)

where C(x, y) = E{[w(x) - ~T'(x)][w(y) - \v(y)]} is the covariance function of displacements
w(x) at position x and w(y) at position y, and

(9)

The associated boundary conditions are proved in the Appendix. For the mean displacement
fii(x), the boundary conditions at x = 0 and x = L read:

and

d [ d
2

WJ-IT' = 0 or -d Do(x)-, = Q
x dx c

(10)

d~T'
-=0
dx

(11)

where 111 and Q are the prescribed moment and shear force at the ends, respectively. The
boundary conditions for the covariance function C(x, y) are

~--_..
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DC
-=0Dx

at x = 0 and x = Land

C= 0 or ~c, [D 1 ~ i3
7

4

aC2J = Qm(y)
(X cc y

(12)

t'C
~=O
t'l'

C=o (13)

at y = 0 and y = L
In order to compare later the exact solutions obtained in the present paper and the

perturbation solutions, we hereby first briefly outline the basic equations based on the
perturbation technique.

PERTURBATION METHOD

Let the bending stiffness EI(x) and the displacement w(x) be represented as follows,
respectively:

EI(x) = EIo[l +C(X)]}
\I'(x) = wo(x)+w,(X)+W2(X)+'"

(14)

where EIo is the mean stiffness and :x(x) is the normalized random field of E/(x). The
parameter :x(x) can be considered as a perturbation of E/(x) from the mean E/o ; it is small
in the sense that I:x(x) I « I. The parameter wo(x) is the displacement corresponding to the
mean stiffness EIo, and wk,) is the ith order perturbation of w(x). Substituting eqn (14)
into eqn (2), we obtain

d 2

£loll +:x(x)] -, [\I'0(x)+w\(x)+w2(x)+' ..J = m(x).
dr

Based on the perturbation technique, eqn (15) gives

d 2\1'0(X) 111 (x)
------------

dx 2 EIo

d 211'i~ I (x) d 2 It'i(X)
---;- - = -:x(x) --7-' i = 1,2,···.

dr dx-

(15)

(16)

Thus, within the first-order perturbation, the mean fi;.UJ(X) and covariance function C(f)(x, y)
of displacement are governed, respectively, by
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d 2 l1/!l (x) m(x)

dx2 E/o

a4
CUI (x, y) m(x)m(y)

--0-- = 0 Ca.(X,y)
a.x-ai (E/o)~
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(17)

where Caa(x,y) = Cov [:x(x),:x(y)]. Within the second-order perturbation, the mean IV(ll)(X)
and correlation function ClIl(x, y) are governed, respectively, by the following equations:

(18)

where Ca'a'(x, y) = Cov [ar(x), :xS(y)] and al(x) = C,ix, x).

EXACT SOLUTION FOR CANTILEVER BEAM UNDER LINEARLY DISTRIBUTED LOAD

Consider first a clamped-free beam subjected to linearly distributed load
q(x) = qo+qlxjL. The beam is free at x = 0 and clamped at x = L. The stiffness of the
beam E/(x) is assumed to be a spatially random field. Let E/(x) = E/o[1 + :X(X)] , and suppose
that the normalized random field:x(x) possesses a jointly uniform distribution with the
following probabilistic density

I [ 3p(x,y) ]f,(x.y)(u, v) = -0 1+ uv ,
4a- a 2

U,vE[-a,a] (19)

where a = constant and p(x,y) = the coefficient of correlation, which is assumed to be
triangular, given by

Ix-yl
p(x,y) = 1- -L-' Ix-yl < L. (20)

The governing equations for the mean value IV and covariance function C(x,y) are, respec­
tively:

where

and

I I I +a
-=--In-­
Do 2aE/o I-a

(21 )

(22)

(23)

--r---- - -------- ._-. - --.--. -----
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(24)

Boundary conditions in eqns (10-13) are simplified to

and

J.i:' = 0,

c= 0,

d 3 w
-=0
dx 3

dw
-=0
dx

ac
-=0ax

at x = 0,)
at x = L

at x=o,)
at x = L

(25)

(26)

at y = 0,

c=o,

a3 c
-=0
al
ac
- = 0 at y = L.oy

(27)

The solution for the mean displacement IV(X) is straightforward and is obtained by inte­
grating eqn (21) four times and satisfying the boundary conditions, eqn (25). The result
reads:

(28)

It is seen that the mean displacement wcoincides with that of a beam that has a deterministic
stiffness Do. Expanding liDo in eqn (28) with respect to the parameter a yields

(29)

where

is the displacement of the same beam with deterministic stiffness Elo. It will be shown later
that the first and second terms of eqn (29) coincide with the first- and second-order
perturbation solutions, respectively.

To obtain the solution of the covariance function C(x, y) from eqn (22) and the
boundary conditions of eqns (26, 27), we first integrate eqn (22) with respect to x twice and
with respect to y twice and reach
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under the free boundary conditions at x = 0 and y = O. The solution ofeqn (31) is composed
ofa complementary solution ljJ(x,y) and a particular solution cjJ(x,y). The complementary
solution ljJ(x, y) can be written as follows:

(32)

where f)(x), f2(x), g](y), and g2(y) are four arbitrary functions. The particular solution of
eqn (31) reads:

The particular solution for x ::::; y can be obtained from eqn (33) by formal replacement of
x by y and y by x, owing to symmetry in x and y. The boundary conditions at the fixed end
x = Land y = L require

f) (L)+yf2(L) +g) (y) + Lg2(y)+cjJ(L,y) = 0)
f'] (L) + yf; (L) + g2 (y) + cjJ) (L,y) = 0

C(x)+Lf2(x)+~)(L)+X~2(L)+cjJ(L,x) = 0 .

f2(x)+gj (L)+Xg2(L)+cjJ] (L,x) = 0

(34)

Solving out functions f) (x), f2(x), g)(y), and glx) from the above conditions, we obtain

f 2 (x) = -cjJ] (L,X)-g'i (L)-xg;(L)

C(x) = -cjJ(L, x) + cjJ) (L, x) - gl (L) -xg2(L) +Lg'] (L) +xLg2(L)

g2(y) = cjJ[ (L, L) -cjJ[ (L,y) + (L- y)cjJj2(L, L) +g2(L) - (L- y)g;(L)

gj (y) = cjJ(L, L) - cjJ(L,y) - (L- y)cjJ] (L, L) +g) (L) +Lg2(L) - Lg2(y)

- (L- y)g'l (L) - L(L-y)g;(L)

(35)

By substituting eqn (35) back into eqn (32) and combining the complementary and par­
ticular solutions, we obtain the covariance function C(x, y) :

C(x,y) = cjJ(x,y) -cjJ(L, x) - cjJ(L,y) +(L- y)cjJ) (L, x) + (L-x)cjJ] (L,y) +cjJ(L, L)

+(L-x)(L-y)cjJ)2(L,L)-(L-x)cjJ] (L,L)-(L-y)cjJ)(L,L), for x ~y (36)

C(x,y) = cjJ(y, x) - cjJ(L, x) - cjJ(L,y) + (L- y)cjJ[ (L, x) + (L-x)cjJ) (L,y) +cjJ(L, L)

+(L-x)(L-y)cjJdL,L)-(L-x)cjJ](L,L)-(L-y)cjJ)(L,L) , for x::::;y (37)

where

. --r---- .. -.--- ..... ---.-.
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Fig. I. Covariance function C(x,y) of the displacement for cantilever beam subjected to linearly
distributed load, normalized by qT!36e15,U"
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Fig. 2. Comparison of means of the tip displacement obtained by perturbation methods and the
exact solution.

a¢(u, V))
¢2(U,V)= aV .

(38)

It can be proved that ¢l (L, L) = ¢lL, L). The perturbation solutions are obtained as

(39)

Figure I portrays the correlation function C(x, y) between any pair of points x and y
for the particular case go = 0, normalized by the constant qT!36L2 Diu' It may be seen that
C(x, y) reaches its extreme value at x = y for any fixed y, as it should be, since C(y, y)
represents the variance of the displacement; C(x, y) attains its maximum variance at
x = y = O. Figures 2 and 3 illustrate the variation of the first and second perturbation
solutions of the mean and variance of tip displacement versus the coefficient of variation
of the random stiffness, normalized by the exact solutions. It may be seen, as expected, that
only when the coefficient of variation is small are the perturbation solutions acceptable.

T
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Fig. 3. Comparison of variances of the tip displacement obtained by perturbation methods and the
exact solution.

"'=0 'S)

Fig. 4. Covariance function C(x,y) of the displacement for a cantilever beam subjected to an end
moment. normalized by M'iD,,,.

EXACT SOLUTION FOR CANTILEVER BEAM CNDER END MOMENT

Consider the same beam as in Example I but subjected to end moment M. The spatially
random stiffness E/(x) = E/o(l +:x(x)] is assumed to possess jointly a uniform distribution
and a so-called second-order auto-regressive correlation

p(x.y) = [1 + IX~YI}_ I'lL (40)

The mean displacement w(x) reads:

(41 )

The covariance function C(x,y) can be solved in a similar way to the method used in the
previously considered beam subjected to a linearly distributed force. The complementary
solution l{!(x,y) and the boundary conditions are the same as those in eqn (32) and eqn
(34), respectively. The particular solution ¢(x, y) is now obtained as

¢(u, v) = D~2 [5L4 +4L3x-4L3y _ 3L 2xy + 2Lxy2 -~Ly'
tu

- (5L 4 +L3x+4L3y+ L 2 xy) e- xL
- (5L 4 + L'y+4L3 X + L 2 xy) e-1L

+LJ(5L+x-y) e(,y)L]. (42)

The covariance function C(x, y) has the same final expressions as those given in egns
(36,37). Figure 4 shows the variation of C(x,y) with positions, normalized by the constant

-T--'---"-- _.-..------- ..- ...--.
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M 2 /15 I u- Again, as expected, C(x,y) reaches its extremum at x = y for a fixed y, and its
maximum value appears at x = y = o.

EXACT SOLUTION FOR SIMPLY SUPPORTED BEAM SUBJECTED TO UNIFORMLY
DISTRIBUTED LOAD

Consider now a simply supported beam subjected to a uniformly distributed load q.
The stiffness of the beam EI(x) = Elo[1 + a(x)] is assumed to be a spatially homogeneous
random field. The normalized random field a(x) is assumed to satisfy a joint triangular
distribution with density function (Gumbel, 1960):

C(X.y) (u, v) = f(u)f(v) {1 +..~90 p(x, y)[2F(u) - I][2F(v) - I]}}
U,VE [-b,b]

(43)

where b = constant and f(t) and F(t) are the marginal triangular probabilistic density
function and distribution function, respectively, namely:

I ( Itl)f(t) = b 1- b ' tE[-b,b]

The correlation structure p(x, y) is assumed to be exponential:

p(x,y) = e-Ix-,IL.

By definitions in eqns (5) and (9), we have

1 I [ (I + b) 1 ( I )J---- In ~- In--
Do - EIob I-b -b l-b2

and

I I )D -(-') = D- p(x,y)
I x,J II

I 150 5 2 I +2b2 I +b 3 I 2 .

15 11 = 49b2 (Elo)2 [3 + hi- - -b-3 -In I-b + b21n Ib 2J

(44)

(45)

(46)

(47)

As previously mentioned, the mean displacement is identical to the displacement of a
beam with deterministic stiffness Do. Hence we have

-,---------

qx 1 2'
w(x) = 2415

0
(L -2Lx +x).

The covariance function C (x, y) of the displacement is governed by

with attendant boundary conditions

(48)

(49)
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aze
e = 0 - = 0 at x = 0 L

, iJxz '

aze
e = 0, - = 0 at y = 0, L.ayz

Eqn (49) can be reduced to

with boundary conditions

e = 0, at x = 0, L or y = 0, L.

2325

(50)

(51)

(52)

(53)

The complementary solution of eqn (52) is the same as that in eqn (32). The particular
solution reads:

z
¢(u,v) = 41 [(8L+3u)(4L-v)L6_~(L+u)L4V3+~(8L+3u)L3V4

It

+ L 4(4Lz + 3Lu+ uZ)(8LZ _ 5Lv+vZ) e-(u-v1/L

-L5 (8L+3v)(4L Z + 3Lu+uZ
) e- u

/
L

-L5 (8L+ 3u)(4LZ + 3Lv+vZ
) e- v

/
L

]

for x ~ y. The boundary conditions require

C(O)+yfz(O)+gl(Y)+¢(Y'O) = 0

C(L)+yfz(L)+gl(L)+Lgz(y)+¢(L,y) = 0

fj(x)+gl(O)+xgz(O)+¢(x,O) = 0

f](x)+Lfz(x)+g,(L)+xgz(L)+¢(L,x) = O.

(54)

(55)

By solving for f l (x), fz(x), gl (y), and gz(x) and noting that ¢(x,O) = ¢(y,O) = 0, the
solution of covariance function becomes

xy 1
e(x, y) = ¢(x, y) + - ¢(L, L) - -L [x¢(L, y) + y¢(L, x)], for x ~ y (56)

L Z

xy 1
C(x,y) = ¢(y, x) + L

Z
¢(L, L) - L [x¢(L,y) +y¢(L, x)], for x ~ y. (57)

SAS 32: 16-0
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~ ,0 o~

Fig. 5. Covariance function C(x, y) of the displacement for a simply supported beam under uniform
pressure, normalized by q' /415, ,.

Figure 5 shows the calculated covariance function C(x, y), normalized by the constant
q2/4D!t. For this simply-supported beam, C(x, y) reaches its maximum at x = y = L/2,
since the maximum displacement occurs at the mid-point of the beam.
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APPENDIX

Proof ofboundary conditions
To prove the boundary conditions of eqns (10)-(12), we just consider cases of free and clamped ends. The

appropriate combination of boundary conditions for these two cases will yield other boundary conditions, such
as those pertinent to simple supports.

Assume first that the beam is clamped at end x = O. The boundary conditions for the displacement w(x) are

1"(0) = 0, dwl1"'(0) = -. = O.
dx'l" 0

(AI)

By taking the expectation operator and noting that the expectation operator and differential operator are
interchangeable, we obtain:

,V(O) = 0, d'1'1,1"(0) = -. = O.
dx \_ = 0

(A2)

Then, for an arbitrary displacement w(y), we obtain:
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('(0. I) = E([I\(O) -It'(O)][II'(y) - It(y)]} = 0
(~

C,(O.y) = h E([\l'(x) - It'(X)][II'(l') - It'(y)]J I, ~ 0

= E{[dH(X) _ M(X)] [1I'(y) -1t(v)]1 II

d.\ d.\ f, ~ 0

= E{[ll'(O) -It'(O)][lr(v)-lt(y)]} = 0

C(X.O) ~ 0

C:(X.O) = O.
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(A3)

(A4)

Assume now that the beam is free at end x = 0 but subjected to a prescribed moment /\1 and concentrated
force Q. The boundary conditions for displacement w(x) are

d'll' - d [ d'"'] _EI- = M, - E/- = Q.
dx' dx dx'

We rewrite the first condition and take expectation to obtain immediately

and

d'[ll-It') = lil[-':- __ --'-].
dx' j.J Dil

Substracting eqn (4) from eqn (2) and then multiplying by cqn (A7). we obtain

d'[lr~ll'(I)]d_'[i\':-ll] = f11(Y)AI[_I_L][_I_..- ._1_.].
dl" dx' £1 Do EI(}') D o(}')

By taking expectation, we obtain

(AS)

(A6)

(A7)

(A8)

= f11(r)ll1. (A9)

Similarly

t 4
('

D;(x,O)~1 =f11(\)A--I.
('X- ('.\'- )

Rewriting eqn (2) and bearing in mind that kl" = I'vl and Qil = Q for free ends. we obtain

d'lt' I [ I" I" ]-._ =--/---:- Qx+AI- q(u)dudl' .
d,,- E (.\) .n.iI

(AIO)

(All)

Taking expectation of eqn (A II), multiplying it by Do and differentiating the result and then letting x = O. we
obtain

(AI2)

Taking expectation of eqn (7). multiplying by D
1

• and differentiating the result. and then letting x = 0 yield

Analogously. the boundary condition at}' = 0 reads

(Al3)

t [ (0

4

(, JI-- D --
t)· I /';x~ ly=' .\

=m(x)Q. (AI4)


